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Undulating rolls and their instabilities in a Rayleigh-Benard layer
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It has recently become apparent that undulating rolls and modulated undulating rolls represent physically
realizable steady solutions of Rayleigh+ed convection in the neighborhood of the critical value of the
Rayleigh number in addition to the solution of two-dimensional rolls. The relative regions of stability of these
three types of convection are studied through analytical as well as through numerical methods. Symmetric
stress-free as well as no-slip boundary conditions are considered; in the former case the analysis is restricted to
moderate and high values of the Prandtl nump8L063-651X96)01005-7

PACS numbe(s): 47.20.Bp, 47.20.Ky, 47.20.Lz, 47.54r

[. INTRODUCTION states which can eventually be realized experimentally in a
sufficiently detailed study. In the present paper the surpris-
Undulating convection rolls have been seen in fluid layerdngly complex interaction between rolls of different orienta-
heated from below in the presence of a mean flow or of othetions is revisited and the stability of undulating roll states
effects introducing anisotropies. In experiments by Avse@nd their modulations is analyzed with analytical and nu-
and Luntz[1] and by Beard and Avsed2] the onset of ~merical methods. _ _ _
convection in an air layer with a mean Poiseuille flow has The paper starts in Sec. Il with a brief formulation of the
been visualized with tobacco smoke and undulating rollgnathematical problem. In Sec. Ill we follow the bifurcation
aligned in the direction of the mean flow have been photoScenario within the framework of the Newell-Whitehead-
graphed. Later undulating rolls as a typical form of convec-Segel equatlon._lnstabllltles W_lth respect to long-wavelength
tion have been seen in inclined convection layi@lsand in pgttern _modulat|0r_1$ are consml_ered in Sec._IV. In Sec. V_ a
electrohydrodynamic convection in liquid crystd4]. The blfurcat|on_ ar)a}lys_ls of co_nvectlon patterns in a fixed hori-
wavy instability of longitudinal straight rolls leading to the ZOontal periodicity interval is described. In Sec. VI the analy-
establishment of undulating rolls has been studied theoret®iS is extended further with the help of numerical methods. A
cally in the case of convection with a plane Couette siBar general dlsgu53|on of the re;ults qnd a comparison with some
and in the case of an inclined convection layéf. More olde_r experimental observations is given in the concluding
recently these studies have been extended to the case of cGfCction.
vection in the presence of Poiseuille fl§i]. Investigations
of undulating roll patterns in the case of electrohydrody- II. EORMULATION OF THE PROBLEM
namic convection in liquid crystals have been made by . o . )
Bodenschatzt al. [8]. For a recent review of the extensive W€ consider convection in a horizontal fluid layer of
research on convection in the presence of a mean shear i§ighth heated from below with either no-slip or stress-free
refer to Kelly[9]. boundaries. The temperaturgandT, are prescribed at the
The wavy instability of convection rolls occurs also in the lower aznd upper boundaries, respectively. Udings length
horizontally isotropic case of a Rayleigh-&&d layer where scale,h“/k as time scale, where is the therr_nal d|ffu5|V|lty,
it is known as the zigzag instability10,11. But since the andT,—T, as temperature scale, the equations of motion for
stability boundary in the plane spanned by the Rayleigﬁhe velocity vectow and the_ heat _equatlo_n f(_)r the deV|at|0_n
numberR and the wave number never intersects the criti- © Of the temperature from its static distribution can be writ-
cal valuea, of a, the transition to undulating rolls is usually ten in the form
not observed in experiments on convection rolls in the ab-
sence of anisotropic effects. In fact, it was long beliej&2]
that the zigzag instability has the sole purpose of facilitating
the transition of rolls with a wavelength exceeding the
critical value)\c_= 2mlag by a c_ertain finite_ amount to a set V.v=0, 2.1)
of new rolls oblique to the original ones with the wavelength
A\ . The experiments of Busse and Whiteh¢a8] have sup-
por.ted this idea in that rolls with fairly large values mf i O+Vv-VO=v.k+V20,
which were generated through the use of controlled initial at
conditions exhibited this transition. While this interpretation
of the zigzag instability is still roughly applicable, more re- where the Rayleigh numb& and the Prandtl numbé? are
cent research14] has indicated intermediate convection defined in the usual way,

d
Pl(ﬁ v+v-Vv) =—VII+ROk+ V3,
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¥(T,—T,)gh® v approximation of a vanishing(P). A finite value ofc was
=—", P= P 2.2 advocated in Refl15] and numerical determinations of the
zigzag instability boundary have been provided in REIS,
with the coefficienty of thermal expansion, the kinematic 16]. The explicit expression
viscosity v, and the acceleratiog of gravity. It is convenient 1 _s
to use a Cartesian system of coordinateg, z with z in the (P 0.033 61+ 4.666% "+1.255P

direction of the vertical unit vectdk. The boundary condi- )= 0.699 27-0.004 72~ 710,008 372
tions are then given either by

VK

(2.50

has been derived in Rdfl7]. Siggia and Zippeliug18] were
v, the first to derive the correct stability bounda®.53 by
O=v,= 97 =0 taking into account the large scale mean flow induced in the
presence of stress-free boundaries.

for stress-free boundaries at= =+, (2.39 _ In orqler to _d_esc_ribe the un_dulating rolls evolving from the
zigzag instability in the region$2.5) and to consider the

or by stability properties of the latter type of solutions we shall use
two different approaches. On the one hand it is convenient to
v, use the formalism of the Newell-Whitehead-Segel equation

0= V2=, = 0 since the zigzag instability is a long-wavelength instability of
convection rolls. The other approach relies on amplitude

for no-slip boundaries az=+}. (2.3bh equations for the amplitude§ and allows one to express the

stability boundaries in terms of the Prandtl and Rayleigh
Simple solutions of Eq(2.1) of small amplitude which are numbers. The long-wave disturbance approximation is not
periodic with the horizontal periodicity intervakk<2w/a,  needed in this approach, but the solution of the amplitude
0<y<2#/f can be written in the form equations usually requires a numerical treatment. To take
into account the peculiarities of the stress-free case, we in-

3 3 . . .
. corporate into our analysis of Sec. V the amplitudef the
022123 A]f(Z,|kJ|)eXp{| kj . r}+i 1_273 AiAjF(Z,ki . kj) mean flow.

xexp{i(ki+kj)-r}+ (higher-order terms (2.9 IIl. BIFURCATIONS

. . IN THE NEWELL-WHITEHEAD-SEGEL EQUATION
where the horizontal vectols are given by

To provide the general description of the various patterns

k1=(a,0,0, kz3=(a,=B,0 and their instabilities, it is convenient to use the formalism of
) , _ e amplitude equations. As long as the considered patterns re-
and where the relationshige j=—k; and A_j=Aj" hold,  5in close to straight rolls, one may use the Newell-

with _the star der)oting the complex conjugate. SO"J“O”S.deWhitehead-Sege(lNWS) amplitude equatiofi19,2q for the
scribing convection patterns in the form of rolls, undulatingsjowly varying complex amplitude of the rolls. After an ap-

rolls, rectangles, and oblique rolls can be represented by exsopriate rescaling the NWS equation can be written in the
pression (2.4 as long as the control parameter om

e=(R—R.)/R. is small in comparison with unity and the

wave numberk;=|k;| do not differ much from the critical oU
value «, at which the Rayleigh numbdR reaches its mini- Tt
mum valueR,.

According to Ref[10], two-dimensional rolls of the form  \yhere ¢ denotes the control parameter and wherés de-
(2.4) with two of the three amplituded,,A;,A; vanishing  fined by y=a,&;*. We shall concentrate on spatially peri-
are the only possibly stable solution among all steady solupgic solutions with the roll wave number (which in terms
tions of Eq.(1) in the region of the convection pattern is the normalized difference from
the critical wave numbeérand with the wave number

e—|U|%+

d i &2 )2
U, (3.1

ax 27 dy’°

p2 - .
2(k—a)<e|1+ — | p(p<€q) characterizing the modulation of the rolls along
folk—ao)’=e 4(1+P) their axis:
with k>« for stress-free conditions, (2.53 U=A(t)expligx}+B(t)expi(gx—py)}
k—a.<—-c(P)e for no-slip conditions, (2.5b +C(t)expi(gx+py)}+ (higher-order terms

wherec is a positive constant depending on the Prandtl num- 3.2

ber and where? is defined by d°R(k)/dk°]y—, /R.. The  Given the modulation scalp %, we can rescale and e,
stability boundaries in the-k plane corresponding to the q=Gp?s ! and e=gp*5 2, such thafe=¢(g/q)?. In the
equality sign in(2.5) describe the onset of the zigzag insta- analysis below the stability boundaries will be expressed in
bility. This instability was described in Ref10], but the terms of the rescaled variablesandq.

stability boundary given in this reference agrees witbag By standard projection technique one obtains after dis-
only in the limit of infinite P and with (2.5b) only in the carding the terms of higher ordéwvhich means the assump-
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tion of the smallness dB| and|C| as compared tpA|) the The dependence of the dynamics on the combination
equations for the time evolution of the complex amplitudeswg+ wc—2wa=wapc iNstead of the individual phases is
A,B,C: owed to the symmetry of the problem with respect to trans-

lations in both thex andy directions. It can be easily seen
from the last of Eqs(3.4) that in the generic cadgvhen the
initial value of wagc iS not an even multiple ofr) this com-
bination monotonically approaches the nearest odd multiple
B of 7, with cofwagc)——1, i.e., the complex variables are
azB(IB_2|A|2_|B|2_2|C|2)_A2C** 3.3 getting phase Iock((:ad. Moreover, insofar as the time deriva-
tive of each individual phase is also proportional to the even-
) ) 5 . tua!ly vanish?ng Sinwagc, there can be no “corotation” of
E:C(|C_2|A| —2|BJ|*—[C|*)—AB*, variables(which would correspond to a traveling wavie-
side this locked state: each of the phases tends to a constant
with the linear incrementsl,=¢—q®> and lg=I; value. Since we are interested in the properties of the final
=¢—(q+p?/25)?, both of which grow with increasing. states only, we may treat the equations as real ones without
The trigonometric representation of the variablesreducing the generality:
A=|Alexp(wa), B=|Blexpiwg), C=|Clexpiwc) casts

dA
a:A(lA—|A|2—2|B|2—2|c|2)—2A*Bc,

Eqg. (3.3 into the form dA
a.331 4t ~All,—A?—2B7-2C?+ 2B0),
d|A| 2 2 2
—r = Al |Al2-2lB[2-2/C|
d—B:B(l —2A°—B?-2C?) +A’C (3.5
—2|B||C|cof wg+ wc—2wa)], dt B : ‘
d|B|
~5r = |Bl(s—2lA12~ B>~ 2/Cf?) O —Clc-2n?- 287~ C) + A%B.
—|Al?|C|cog wg+ wc—2wp), ) , .
(3.4 The dynamics of the systert8.5 is bounded, i.e., the
d|C| , , , ' value of
—r =ICldc—2lA12-2]B*~|c]?)
d(A2+B2%+C?) ) ) ) ) )
—|A|?|B|cog wg+ wc—2wp), a1 2UaATH1gB +IcCY)—4AY(B-C)
—2(A%+B?+C?) —4B?C? (3.6

a (Q)B+ O)C_ZG)A)z _Sin((L)B+ O)C_ZQ)A)

is obviously negative for large values [&%|, |B|, or |C|. At
the same time this system inherits from the Newell-
Whitehead-Segel equation the variational property

BZ CZ
|A|2(u+u)+2|3||c|}

X
ICI* " IBJ?

d 1 1 dA\?2 (dB\? [dC\?
_ - 2 2 2 - 4 4 4 2p?2 202 22__ A2 - _ _ _ =
o 2(IAA +15B +ICC)+4(A +B*+C* +A%B%2+A%C?%+B?C ABC) (—dt) (—dt> (—dt) <0. (3.7

The combination of the two latter properties implies that q=-
the only possible global attractors (8.5 are the stationary
solutions. One should also notice(®.5 the presence of the whose vertical right boundary separates the domain of
invariant subspaceS=B andC=—B. zigzag-stable rolls from that of the long-wave zigzag-

The basic pattern, the proximity to which is necessary forunstable ones. In the following we shall restrict ourselves to
the validity of the Newell-Whitehead-Segel approach, is thehe domain(3.8). As a consequence therolls always have
pattern of rolls parallel to the axis. The corresponding fixed at least one growing perturbation mode. Aiming at the com-
points have the coordinatdé#,B,C}={13,0,0 and will be  plete description of the bifurcations of the steady solutions of
referred to as ‘A rolls.” Other possible pure roll solutions Eg. (3.5 the condition of smallness ¢8| and|C| as com-
are those in which only th& or the C mode is excitedB  pared to|A| will be waived.
andC rolls, respectively. We are interested in the parameter When both 4 andlg are negative, the only attracting state
values for which theA rolls are unstable with respect to is the trivial zero equilibrium. With increasing |z becomes
zigzag perturbations; this corresponds to the conditiorpositive fore =&g=(q+ 1)? and two symmetric couples of
Ig>1,, which defines in th@-z plane the half plane stableB rolls (B2=Ig) andC rolls (C?=1g) bifurcate from

B Ll

(3.9
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Knuckle pattern Undulating rolls The conditione=7 corresponds to the supercritical

' 1 e\ e P pitchfork bifurcation, at which the solution@.10 branch
from the unstable rectangular pattern. Along with two obvi-
ously negative eigenvalues corresponding to the invariant
subspace B=C (the characteristic equation being
A2+2Ig\ +4A%B2=0), the solutions(3.10 possess the ei-
genvalue 63—8l, which is responsible for the eigenmode
with B# C and is positive close f, , but becomes negative
for

£=85=0%-30—3, (3.12

which condition defines the domain of stability of the undu-
\l | . lating rolls. The linee =5 denotes the subcritical pitchfork

, ﬂ ey e bifurcation, at which the unstable steady mixed-mode solu-
tions

FIG. 1. Patterns of solutions bifurcating from straight rolls:

I
knuckle patterr{left) and undulating rollgright). The patterns have B? B

A?=pB? C=pB,

= 5,
been obtained through a superposition of disturbances with a finite (1+p)
amplitude onto the pattern of straight rolls.
) 215 +1g
zero. Their basins of attraction in the phase space are sepa- where p*+p —2lg +1=0 (313

rated by the stable manifolds of the simultaneously born un-
st?blez fixed points, given by the expressioh=0, are born which exist foE=%g. The bifurcation at3.12 is a
B=C"=1g/3, and corresponding to the rectangle patternssymmetry-breaking bifurcation: unlike the undulating rolls
At [,=0 (=e,=0") the couple of unstabl@ rolls bifur- (3,10, the unstable solutioné3.13 do not possess reflec-
cates from zero; these fixed points have two positive eigentonal symmetry in the longitudinal direction.
values. The two corresponding eigenmodes describe modu- For fixedq the bifurcation values of are ordered in the
lations of the roll boundaries with the excursions of thefollowing way: 0<zz<z <z1<z,<zs. TO summarize,
opposite ‘boundaries being either in counterphdt® et us consider the route across the donai8) which cor-
knuckle” instability) or in phase(the “zigzag” instability)  responds to an increase of bajrands. After the destabili-
as shown in Fig. 1. The knuckle instability is removed zation of the zero equilibrium one observes the birth of
through the subcritical pitchfork bifurcation occurring at the stableB and C rolls as well as of unstable rectangles. Later
line Ig= 314, which in terms of the coefficients of the initial the unstableA rolls are born; their instability is partially

problem is given by remedied at the ling=%;. Further on, the unstable undu-
- lating rolls are born from the rectangles at the lies) .

=B =G q_1 3.9 They get stabilized at the lire="¢5, emitting the unstable
2 8 ' solutions (3.13. Finally, at the right boundarg=—3 the

stable undulating rolls merge into tierolls, thus stabilizing
The mixed-mode solutions with A>=(2lg—1,)/5,  them. For the case of fixed negatigeand varyings the
B?=(3lx—1g)/15, C=—B, which are born at this bifurca- interchange of stability between the steady states is sketched
tion and exist fore >, are always unstable due to the in Fig. 2, where the solid lines denote the stable states,
presence of two positive eigenvaluascorresponding to  whereas the dashed and dotted curves correspond to the un-

growth rates of disturbances: one of them equé¢Rand is  stable solutions with one and two positive eigenvalues, re-
responsible for the breaking of the symme@y=—B; the  gpectively.

other one is the positive root of the characteristic equation
5N\2+2 (2l 5+ 15)A —20A%2B2=0 which describes the pertur-
bations within the subspac@=—B.

The zigzag instability in the case @ rolls is stabilized

IV. LONG-WAVE MODULATIONAL INSTABILITIES
OF THE UNDULATING ROLLS

only at the right boundary,=1g of the domain(3.8). As a The conclusion about the stability of the undulating rolls
result of this supercritical pitchfork bifurcation the steady (3.10 for s > is valid only within the class of the patterns
solutions with given by Eq.(3.2). To allow for perturbations modulating the

5 5 wavelength of the pattern, let us impose o(80l0 infini-
A°=3l,—2lg, B°=lg=Ia, C=B (310 tesimal disturbances of the form

are born which correspond to the undulating roll pattern.
Thus the right boundary of the domain in which the patternz exp{=id(x cosp+y sin ¢)} & expligx}
(3.10 exists is given byl,=Ig; the left one is the line ~*
3l,=2lg, i.e, . .
+& expli(qx—py)}+ &z expfi(gx+py)j] +c.c.,

T=Ey=0%-20-1%. (3.11) 4.1
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The growth rateg; of the eigenmodes™(t) xexp(\t) of Eq.
(4.2) can be found as the eigenvalues of the corresponding
complex matrix of sixth order. Owing to the fact that the
coefficients of(4.2) are real, the latter matrix is decomposed
into two identical real matrices, which are associated with
the real and imaginary components of the amplituaés
respectively. In fact, this separation means that all the eigen-
values of the complex matrixwhich are real due to the
variational property of the NWS equatipmust be of mul-
tiplicity not less than 2. This additional symmetry arises
from the freedom of choice of the phase of the complex
perturbation. Due to this degeneracy the pitchfork bifurca-
tion should produce not a couple of new steady solutions but
a continuous family of thenfparametrized by the phasédf
the corresponding symmetry is disturbed, the family disap-
pears, leaving isolated fixed points since oscillatory states
like standing or traveling waves are forbidden by the varia-
tional character of dynamics. Keeping this in mind, we will
simply consider below the real matrix of sixth order which
can be, for example, the one acting in the subspace of the
real parts of¢;” and¢; .

FIG. 2~ Exchange of stability between bifurcating steady solu- ditil(:)lriratlh :;r:]erggfrtigsns_rireesgoasrs;b;ig)ti?etrg% s&’ﬁgfmeh?nsoz(a-
tions for g=—1.0. Stable solutions are indicated by a solid line, ~ .~ =" =7 - -
unstable solutions with onéwo) positive growth rates are indi- Iatlon Is directed either e_llong theaX|s(¢=0_) or along_the
cated by dashetotted lines. Circles mark pitchfork bifurcations. Y 8XIS (¢p=ml2), respectively. Let us+con+S|der the first of
The circles denoted bit,U,S correspond to the disappearance of tN€se two possibilities. In this cadg =l3 and |, =1,
the knuckle instability, the birth of undulating rolls from rectangles, h0lds, and the matrix of the sixth order can be further de-
and stabilization of undulating rolls through the emission of asym-composed into two submatrices. The first of them is respon-
metric mixed solutions, respectively. sible for the four-dimensional invariant SUbSpace defined by

the conditionst; =—&;, and the second one corresponds to

where the angle(0<¢<m/2) characterizes the direction of the two-dimensional invariant plarg — &5 =¢&; =0. The de-
the modulation. The value daf is assumed to be small as terminant of the related matrix for the perturbations of the
compared tay. After substituting this ansatz into the NWS former kind[the “domain” perturbations, see Fig(8] can
equation one obtains the linearized equations for the dynane presented as
ics of the amplitudesg;(t):

(0.5/a[%+[B%+[cP) V2

4

Pt~ -
. _ _ 2A2R2 _ 2_ 4

& =& (15 —4B2—2A2) + £ % (2B?— A2) - 2¢; * AB BAA'B" 2 (230~ 1)+ d'Ky(s,0)

Fx
+2£5*AB, +d°Kg(z,q) +db. (4.9

& =6 (15 —4B%—2A%) +2£; B*~ 26" AB- ¢ * B?
+£5* (2B A?),

The stability of the undulated rolls with respect to the do-
main perturbations with vanishirdyrequires the positiveness
of the factor ofd? in (4.4):

4.2

&5 =2£; B2+ &5 (13— 4B2—2A?) +2¢7 * AB
&7 (2B7-A%) — &5 "B,

£>%4=30°%+1. (4.5

By inspection both factor&, and K¢ in (4.4) are positive

for e<e, andg<-—3. Consequently, the instability for finite

wher_e _the ve;lue_s oh andB are taken fron(3_.10)z and the d arises for higher values &f than in the case of infinitesi-
coefficientsl - (j=1,2,3 represent the contributions of the
linear term 6f the NWS equation to the dynamics of themald'
rlnodes + and£- qiven b t?\ue f:)rm las y ' Two growth rates\ for the perturbations belonging to the

g & gV y u second kind of symmetrjthe corresponding flow pattern is
d%sirteh\ 2 shown in Fig. 8b)] are determined from the characteristic
> ) , equation

n

If=s—(id cosp+q+

N2—2\(B2—A%—d?)
. (=d sing—p)?|?
I5=¢—| =d cosp+q+ ————— | , (4.3 b1 o
27 p
q+ | +d?

+2d2[BZ—A2—2
27

=0. (4.6
(+d sing+ p)z) 2

I§=s—<id cosp+q+ 2

Hence the stability condition
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turbations with vanishingl requires that the bracketed ex-
pression in the last expression should be negative, that is,

—15-./57 ~<—15+J5—7

24 4 24

4.9

It is noteworthy that this condition does not depencecand
imposes restrictions only on the wave number. The eigenval-
ues of the other third order matrix which describes the vari-
ables &/ — &%, §;+§§* , and &3 +&* at d=0 are 0,
—2(2B*+A?), 2(B2—A?). Forz>z5 the last one is nega-
tive, and the possible instability for small but finite values of
d can be associated only with the first eigenvalue. The de-
terminant of the matrix equals

10
p
6

5
7] — 407 2+ 2 (897 - 129°+ 9+ 3) + 27109

+139%— 250 3+ 129%— 4G° | d®+ o(d%). (4.10

FIG. 3. Patterns of transversal long-wave instabilities of undu-The domain of stability of the solutiod8.10 with respect to
lating rolls. The long-wave instability manifests itself either in the long-wave disturbances of the considered symmetry type
modulation of the amplitude of undulatiop&), see also Ref14]] s bounded by the curve at which the bracketed expression
or in a modulation of the phase of undulatidifs)]. in (4.10 vanishes. This condition yields a quadratic equa-

tion fors. In the region of existence of the undulating rolls
7? (<—1%) this equation has real roots only in the interval
o (4.7 —0.687 15<G<—0.294 43. Therefore the domain of stabil-
ity is encircled by a closed curve=g¢, stretched between
) ) ) these two values dff (the upper and lower branches of the
follows, which shows again that among all disturbances;yryve correspond to the two roots of the quadratic equation
those with infinitesimall are the most dangerous. The bifurcation diagram in thg-z plane is presented in

Owing to the fact that both ande/, are obviously larger Fig. 4(a), where all described bifurcation lines are plotted.
thaneg, these two instabilities reduce the domain of exist-pg 3 curious detail one may notice the tangency of three
ence of stable undulating rolls. In the case of very sall ¢~ rves: (d), £,(9), and the lower branch of the
the value ofe,, is smaller than thg\t of 4 for q>—§._0n the  curve?,(q) at the point@=—1, ¥=1). However, the insta-
other hand, the patterns with< —Z are more sensitive to the jjities whose onset is marked by these curves, as well as
perturbations of the second kind. _ those occurring outside the vertical stripe bounded by the
~ Now let us consider the second special case: the modulgies (4.9), seem to be of purely academic significance. One
tions of the patterri3.10 in they d|rect|or). In thls_snuatlon sees that the undulating rolls given by the expres§Bh0
I7=I1,13=13, andl; =13. The Jacobian matrix d#.2  are unstable with respect to long-wave disturbances almost
is decomposed into two matrices of third order. The respeCaverywhere in the region of their existence. The only excep-
tive perturbations have basically the similar ribbonlike shapgign, is the narrow wedge between the two intersections of the
but differ by the phase, which is shifted along the undulateq:ur\,egd with the upper branch of the cur@ which occur
pattern by half of its transversal period. The first of the gt the pointdg=—1%, 5=7) and (§=—0.595 03,5 =2.0633.
submatrices corresponds to the variabs+é,*, &€ In the application to the physical problem, of course, the
—&*, and &5 — &% . Ford=0 (whenl;=l3=Ig and rescalinge=2(q/q)% q=Gp2s * has to be kept in mind.
| £ =14) it has two obviously negative eigenvalues equal to The nonlinear development of the long-wave modulations
—(3B%+A?%) + [(3B*+A?)?—4A%B? and the third eigen- may be estimated through the computation of the cubic terms
value equals zero. To evaluate the effect of a small, but finitén the corresponding amplitude expansions. Our calculations
d on this last eigenvalue, the determinant of the matrix musshow that both of two relevant instabilities, encircling the

- 1
75,2352~ ;-

be calculated with the result mentioned island of stability of the undulated rolls, are su-
percritical: this means that the corresponding patterns should

A2ps be stable at least locally near the respective bifurcation
27 (24G%+ 304+ 7)d?+ o(d*). (4.8  boundaries. Thus one may expect to observe the stable do-

mainlike patterns immediately below the curgg and rib-
bonlike longitudinally modulated undulating rolls fee, .
The stability of the solution$3.10 with respect to the per- Among the latter patterns those are of special interest whose
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modulation length is in resonance with the wave nunybef
the undulating rolls themselves. Two examples are shown in
Fig. 5.

V. BIFURCATIONS IN THE AMPLITUDE EXPANSION
OF THE BOUSSINESQ EQUATIONS

The predictions obtained above with the help of the NWS
equation can readily be applied for all Prandtl numbers to the
case of convection in a fluid layer with rigid boundaries. The
dynamical properties of a fluid layer with stress-free bound-
aries are still described by the NWS equation as long as the
Prandtl numbeP is infinite. WhenP is finite, the effects due
to the possible presence of a mean flow must be taken into
account. In order to include the mean flow we perform the
analysis for the stress-free case with the help of coupled
amplitude equations describing the temporal evolution of the
velocity field. This dynamical model captures reasonably
well the basic phenomena close to the onset of convection.
When the velocity field is decomposed into a poloidal and

FIG. 4. Bifurcation diagram based on the NeweII-Whitehead-fi toroidal componenty=VX(Vxk®)+Vxky (where k

Segel equation. =g, birth of stableB and C rolls and unstable
rectangles;s,, birth of unstableA rolls; &, removal of the

is the vertical unit vectgr then three complex variables,
a;(t) (j=1,2,3, correspond to the time-dependent ampli-

knuckle instability ofA rolls; &, , birth of unstable undulating rolls ~ tudes of the basic components®fwhose wave vectors may

from rectanglesg, stabilization of undulating rolls through sym- be written in the formk;=(e,(j —2)p,0). Both the values of
metry breakingz4, boundary of domain instability for undulating P and ofa,—« are assumed to be positive and small where

rolls; &,,, stability boundary provided by Ed4.7); &, , stability

a.=mlV2 is the critical wave number. The fourth variable

lines given by Eq(4.9); &,, boundary of the longitudinal modula- u(t) is responsible for the mean flow and corresponds to the

tion instability (4.10 for undulating rolls.

component of the toroidal field with the weakest linear
damping(it can be represented as a sum of two terms gen-
erated by the interaction of the first mode with the second
one and the second mode with the third mode, respecjively

FIG. 5. Patterns of longitudinal modulations
of the undulating rolls. The modulation wave
numberd is a fraction of one-halfleft patterr) or
one-third (right pattern of the wave number of
the undulations.
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The equations governing the time evolution of the ampli-unstable for the considered wave vectors. The problem is
tudesa; ,u are thus reduced to the set of real ordinary differential equations:

3
S 2 2
a;=v1(R— R1)31_31< 21 oiila ) — 0148583 +S1a,U%,

- 2 2 2 2
a;=y1(R—Ry)a;—ai(01@1+ 01,85+ 01383) — 0143533
+s,a,U,

3
a,= 72(R—R2)az—az( > 0'2i|ai|2) — 042,85 83

S 2 2 2
;= v2(R—Ry)ay—ay(021@1+ 0285+ 02185+ 0242, 83)

+s,u(ag—ay),

+s,(azu* —aju), (5.2

- 2 2 2 2
(5.1) az=y1(R—Ry)ag—az(0132]+ 01285+ 01183) — 0143521
3
Lo 2 2 —S1aL0U,
az= 73(R_R3)as_as< 21 osila ) — 0348587 —$,3,U, 192

u=—86%u+Qay(az—ay).
U= —5°u+Q(azal —a,a’), _ _ _ .
u U+ Q(asdz ~ a2y ) We consider the bifurcations of steady states in E52)
whereR: = (m2+|ki|?)%k;| 2 are the threshold values & under the provisionR;<R,, which is equivalent to

[ / o . 2 2 2 = ; ;

corresponding to the excitation of thth mode Q= apw?/2, P<(7°+a°)(1+4J1+4m“a “—3)/2. Having fixed the
and the factors . are given by values ofP, «, andp we increase the Rayleigh number be-
:|kj|2(772+|kj|2)72(1+ P) 1. The derivation of Eq(5.1)  Yyond the threshold valuR; which marks the onset of con-

as well as the complicated expressions relating the faoﬁprs vection in the form of the roll pattern with the wave vector

ands; of the nonlinear terms to the paramet&sP, o, and  {a,p}. In the general case the explicit expressions for the

p can be found in Ref21] wherea,p are denoted bys,é. coefficients of(5.2) corresponding to each of the occurring

The symmetries displayed by the quadratic terms depend dpifurcations do not shed direct light on the respective inter-

the symmetry betweek,; andk;. Besides the obvious con- relations between the bifurcational values of the physical pa-

sequenceR;=R;, the latter symmetry also simplifies the rametersR, P, a, andp, owing to the complicated way in

matrix of the coefficients of the cubic terms;=os;,  Which the former depend on the latter. A simplification is

O1p=0733, 013=031, 014=034, ANd 0p1=073. possible in the case of smadlfor which the truncation em-
The basic difference between Ed8.3) and (5.1) is the  ployed for the velocity field provides the asymptotically cor-

presence of the fourth component representing the medigcCt description of the situation. The leading terms in the

flow. This term not only increases the order of the system bugxpansions for the coefficients are given in this case by the

also destroys the variational character of the dynamics. In thR-independent expressions:

general case it is impossible to prove that the only attractors

are the steady solutions. On the contrary, it can be shown a*P?

that at very low values oP Hopf bifurcations will be en-  012=013= 0= 024220112201422022=m+0(p2),

countered, giving rise to time dependency. However, at the

high and moderate values &f the influence of the mean

flow is more quantitative than qualitative, and the assump- si=s,=pla+to(p’)], yi=y.+o(p?. (5.3

tion that, similarly to the case of the NWS equation, the ] ]

whole phase space can be decomposed into the domains Isfturns out that in the range of high and moderate values of

attraction of the few fixed pointéfor which only thelocal ~ P the increase oR leads to the same sequence of bifurca-
stability can be provenseems quite plausible. tions as the increase efin the NWS equation fog<—3. At
Once again, the presentation in the trigonometric formR=Ry the mgcha;nce;l e2qu|br|um loses sgalblllty, and the
a;=|ajlexplio;) (1=1,2,3, u=|ulexpiw,) permits us to stazblezrollzs with el,az,ag,u)=€311(R—R1)all ,0,0,0 and
reduce the actual dimension of the problem. Due to the twé21,82,23,U)=(0,01(R—Ry)07;,0) (the analogs ofB
translational symmetries in the plane of the layer the dynam@ndC rolls from the preceding sectiprmre born. Their do-
ics does not depend on the individual valuesspf but only ~ Mains of attraction in the phase space are separz_;\ted by_ the
on the combinationsw,—2w,+w; and w,—w;—w,. Al- st?blezmanlfolds of the non;}able steady s_olutlons with
though we are unable to prove that the union of invarian@1=2a3= ¥1(R—Rq)(o11t 019 7, @;=u=0, which corre-
subspaces in which both of these combinations are even mi#Pond - to  the —unstable rectangular planforms. At
tiples of  is globally attracting, our numerical experiments R=R=Ry+p*(7°—3a"7*~2a%/a" the rolls with wave
with different initial conditions strongly support this assump- Vector{a,0; bifurcate from the equilibrium. The correspond-
tion. The time derivatives of individual phaseg are pro- N9 fixed point
portional to sines of the collective phases and thus vanish on
these subspaces. The solutions with time-independent ampli- a;=az=u=0, a§= vo(R— R2)0'2_21 (5.9
tudes for which the mentioned combinations are different
from multiples of = would describe traveling waves. These in the phase space has a two-dimensional unstable manifold.
can be encountered only for rather low valuesPoéind are  Just as in the case of the NWS equation, the respective in-
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which for smallp is

R=R¢=R;+3(R;—Ry)+0(p?), (5.6)

is reached, the knuckle instability is removed via the sub-
critical bifurcation: The resulting steady solutions witk0,
a,;=ay are unstable everywhere in the domain of their exist-
ence,R>R . The further increase oR leads to the next
bifurcation atR=R which corresponds to

¥2(R—=Rp)(011+ 019) = ¥1(R—Ry) (2021~ 0724~ 4p°Qsy),

(5.79
ie.,
3P242 3
R=Ry=R;+(R;—Ry) 3P+ 47211 P) +o(p°).
(5.7b

At this point the undulating roll solutions with

FIG. 6. Exchange of stability between steady convection solu-

tions for P=5, «=2.1, p= \/acz—a =0.724. Stable solutions are

indicated by solid lines, unstable solutions with gh&o) positive
growth rates are indicated by dashétbtted lines. The circles

aZ=[y1(R—Ry) 0o~ ¥2(R—Ry) (015~ 014
+2p7?5,Q)]1A7Y,

mark the same pitchfork bifurcation as in Fig. 2. In addition, the
bifurcationZ which marks the transition from undulating to straight

rolls with increasingR is shown.

stabilities correspond either to deformations of the roll

boundariegzigzags or to amplitude modulation&nuckles.
When the valueRy of R satisfying the condition

Y1(R=R1) 0= v,(R=Ry)(012+ 014), (5.5
0.08
Rz stable rolls

|83
@
~
o R&stable Undulating rolls
0.00 ; =

-0.25 A= 0.00

FIG. 7. Bifurcation lines and stability regions in the cése50,
p=0.5. The meaning of the symbols is as followsR,, birth of
rolls (unstable forq<—0.027 99; Ry, birth of unstable zigzags
from unstable rectangleRy , removal of the knuckle instability for
the rolls; Rg, stabilization of undulating rolls through symmetry
breaking;Rz, removal of zigzag instability for rolls.

a5=[ ¥2(R—Rp)(011+ 019 — ¥1(R—R1) (2051~ 024

—4p~?%s,Q)]A 7Y,
(5.9
a3: - a11

u=—2p?Qajay,

where

A=(011+ 01902 (01— 014+ 2P %51Q)
X (2021~ 024~ 4P ?5,Q)
branch from the unstable rectangles. The soluti@g) in-
herit from the rectangular pattern the instability with respect
to perturbations which violate the symmety=—a,. This

instability is removed by the subcritical pitchfork bifurcation
which occurs aR= Rg when the coefficients df.2) satisfy

y1(R—Ry)=af(301,— 019 +a5(oio+ 010), (5.9

where the values ai; anda, are taken fron{5.8). For small
p this expression yields
Rs~Rz+(R2—Ry)
><3.P4 4—6P2a?m?(1+P)+4m4(1+P)?
PYa*+5P%a’m?(1+P)—4n*(1+P)?
(5.10

This symmetry-breaking bifurcation produces unstable
steady solutions witla;# —a,; which exist in the parameter
domain R>Rg. Finally the value of the Rayleigh number
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FIG. 10. The stability of flows fop=0.5 andP=100 as a

function of the scaled supercritical Rayleigh numband the wave

numberg. Primary rolls, which exist above the neutral cufi@ng-

reaches the boundary of the zigzag instabiity R, which
is determined by the condition

dash short-dashed lineare stable above the zigzag lite—) or
the Eckhaus liné---) depending on which one is higher. Undulating
rolls are stable in the hatched region and undergo instability with

respect to domain modés --) or with respect to undulation modu-
lations(------ ).

¥1(R=Ry)025= ¥2(R—Ry) (015~ 014+ 2p?Qsy). (5.11)

For smallp the latter becomes

0.05
o~
N
&
&
N
p—
0.00
657 662 667
R

FIG. 9. Stability exchange for the low valuesBfP=2.4. The
same wave vectors as in Figs. 6 and 7 have been chosen. Stable
solutions are indicated by solid lines, unstable solutions with one
(two) positive growth rates are indicated by dasliddtted lines.

The circles mark the same bifurcations as Figs. 2 and 6, but the

symmetry-breaking bifurcatio® occurs for the knuckle solution
instead of the modulating rolls.

a,2 P2

Rz=R,;+(R;—Ry) m+0(p3)-

0.20

(5.12

Here the stable undulating rol{S.8) merge with the unstable
straight rolls(5.4), transferring to the latter their stability: for
R>R; the pattern(5.4) is stable. It is straightforward to see
that for a—#/v2 the last expression provides the boundary
(2.539 [18,27. The stability exchange between the steady

0.15

0.10

0.054 =~

0.00

-0.25

q

0.00

FIG. 11. Same as Fig. 10, but fpr=0.7 andP=100.
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For P<P, the order of bifurcations following the increase
of R from R, is different(Fig. 9): now the first instability of
the pattern5.4) to be removed is the zigzag instability. The
undulating rolls(5.8) are unstable towards the symmetry-
breaking perturbations everywhere in the domain of their
existence, Ry,(P)<R<Rz(P). Immediately beyond the
. \ boundary of the zigzag instability the straight ral&4) are

N : still unstable with respect to the knuckle mode. Their stabil-

n ity is completely restored on reaching the liRe= Ry (P).
The knucklelike steady solutions produced by this bifurca-
tion are always unstable. The further growthRincreases
the number of their instabilities, when the two steady solu-
tions with a; # a; branch from the knuckle mode as a con-
sequence of the symmetry-breaking bifurcation as shown, for
instance, at the poir® in Fig. 9. This instability is analogous
to the corresponding instability of the undulating rolls and is
e e also described by expressiofb.9). The branch of the

-0.25 -0.20  -015  -0.0  -0.05 0.00 traveling-wave solutions which results from the interaction
q of the zigzag and the knuckle instabilities bifurcates into the
directionP<<P, and is unstable. Thus stable undulating rolls
can be met only foP>P, . The value ofP, depends onx
and p. Keeping in mind thate®’<a?=7%/2, we see from
(5.13 that the valueP=1+v3=2.72 ... represents the
lowest possible boundary &, (a,p).

0.08

0.06

0.04

0.02 4

0.00

FIG. 12. Same as Fig. 10, but fpr=0.7 andP=25.

solutions of Eq(5.2) caused by the increase Bfunder the
fixed values ofe=2.1,p=0.7,P=5.5 is presented in Fig. 6.
The relatively low value ofP has been chosen in order to

enhance the resolution of the plotted curves which can oth- V1. LONG-WAVE INSTABILITIES

erwise hardly be distinguished. The phase diagram in the AND THEIR NONLINEAR EVOLUTION

plane of the parametets= o — «. andR for the fixed values ) . - )

P=50 andp=0.5 is shown in Fig. 7. In order to investigate the stability of undulating rolls

As in the case of the NWS equation, the stability domainWith respect to wavelength changing instabilities at finite
of the undulating rolls in thes-q plane lies between two Prandtl numbers we have extended the system of%#). to
curves, marking the onset of the Symmetry_breaking instabilone with at least nine wave vectors included. The coeffi-
ity and of the zigzag instability, respectively. The only dif- cients have been calculated numerically from the underlying
ference is the location of the latter curve. In the NWS typebasic equation£2.1) by assuming that all rolls have approxi-
analysis this boundary on thee plane is parallel tqj=0  mately the same critical Rayleigh number, i.e., we have a
[up to the effects associated with a nonvanishi(]a)' see multlple bifurcation pOint. The Computations confirmed that
(2.5b and(2.50 abové; hence the increase efalone leaves in the parameter space the region of stability for the undu-
the roll pattern unstable with respect to zigzag perturbationdating rolls lies between the boundary of the “domain” in-
In the presence of the mean ﬂOW, however, the increage of Stablllty and the border of the |Ongitudina| modulation insta-
leads to the disappearance of the zigzag mode, and the rbility.
sulting boundary in Fig. 7 is inclined. The results of the analysis can be seen in Figs. 10 and 11

As the value of the Prandtl number is decreased, thér P=100 andp=0.5 or 0.7, respectively. In comparison
whole sequence of events is altered. The boundary of th&ith the case of infinite® (see Fig. 4, the region of stable
knuckle instability is almost insensitive to variations Bf ~ Undulations is much bigger for this intermediate valuePof
The latter mainly affects the intensity of the mean flow. But The region of stable undulations also grows with increasing
as can be seen from the shape of the knuckle patfégn 1), p. The deformation of the stability boundary in the case of
the curvatures of the opposite sides of the roll exactly bal?=100,p=0.7 seems to be due to a Prandtl number effect.
ance each other. Hence the bifurcating unstable steady sol/hen the Prandtl number is decreased further, the region of
tion does not include a mean flow component. On the otheptability shrinks again, as can be seen in Fig. 12 for which
hand, bifurcations associated with the undulating roll patterrihe parameter® =25 andp=0.7 were chosen. This effect is
are strongly affected by changes®fthe graphs oRy(P),  due to the decreasing regime of stable zigzags with respect to
Rs(P), and R,(P) on the parameter plane follow the de- the symmetry-breaking instability for decreasifganalyzed
crease ofP (see Fig. 8 fora=2.1 andp=0.724. in Sec. V and shown in Fig. 8.

The bifurcation curve®,(P) andRy(P) intersect in the Although the domain instability may be viewed as a wave
point, the coordinatesP, and R, of which ensure number adjustment procegH], it conserves the number of
o1,=p 2s,Q. For smallp this equality can be transformed the roll pairs in contrast to the classical Eckhaus instability.
with the help of(5.3) into The computations confirm the supercritical character of the

respective bifurcation. The stability of the domain states was

5 5 checked by the time integration of the corresponding equa-
P _m (5.13 tions with the use of the explicit Adams-Bashforth method.
P,+1 o ' The initial conditions for most of the runs were chosen near
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FIG. 13. Shadowgraph visual-
ization of the evolution of the zig-
zag instability in a layer of sili-
cone oil heated from below.
Intervals between the photographs
are about 10 min except for the
last interval, which is about 30
min. The same parameter values
(R~3600,P~100 as in the case
of Fig. 11 of Ref.[13] were used.

¢ ’ f

the slightly distorted roll patterunder the parameter values tory experiment. The method of controlled initial conditions
where this pattern is unstable with respect to the zigzag peintroduced by Chen and WhitehegB] and applied success-
turbationg. Usually the system heads for the undulating pat-fully in the experimental study13] of the stability of roll
tern. If the latter is also unstable, further instabilities evolve pattern in dependence on their wavelength could be used to
For higher orders of truncation we also used the vicinity ofexplore stable patterns of undulating rolls and of domain
the steady undulating roll solution as a starting point. structures together with their instabilities. At the time of the
It can be seen that the domain pattern is stable for trunaaylier studyf13] there were no theoretical reasons to attempt
cations including nine and more wave vectors, although thg, more detailed exploration of the parameter space. Never-
increase of the number of modes leads to some decrease pfjess, the observations did indicate a tendency towards do-
the stability region. It turns out that adding the modes whos, i+ formation. In Fig. 13 a previously unpublished set of

wave ”“”?bers are multiple_s_of the undulation wavelengt he photographs is shown, obtained in the same fashion as
does not influence the stability. Much more dangerous fo'{hose given in Ref[13]. Through controlled initial condi-

the domain pattern with the transversal modulation wav ions rolls with a wavelenath in the ziazag-unstable regime
numberd are the subharmonic disturbances corresponding t 9 gzag 9

the modes with (—1)d/2, n=1,2 When initial con-  Were generated. As the zigzag instability evolves, it spreads

ditions near the primary roll are chosen, the domain mod@rimarily along the axis of the rolls a“f! tends to COMpress
with the smallest possible wave vector is usually reached af!lS Petween regions of strong undulations such that an in-
a stable fixed point. But a detailed study of the preferredérmediate region of only weakly undulating rolls is ob-

wavelength of the domain pattern as a function of the paramt@ined. In the case of Fig. 13, the parameters were obviously

eters of the problem has not yet been made. chosen in such a way that the strongly undulating rolls
evolved into oblique rolls. But the tendency towards a do-
VIl. DISCUSSION main structure is noticeable in that the weakly undulating

rolls return to almost straight rolls.
The theoretical predictions made in this paper and the The main difference between the laboratory apparatus and
preceding Lettef14] could eventually be tested in a labora- the assumptions of the theory is the finitely conducting
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boundaries of the experimental configuration. Because of théons on pattern domains are available, future experiments
use of the shadowgraph method for the visualization, thisare highly desirable.

condition will probably be retained in future experiments.

But all indications suggest that only qualitative aspects of the

experiment such as a shift in the critical value of the wave ACKNOWLEDGMENT

number will be affected by a finite ratio between the conduc-

tivities of fluid and boundary. Since the case of undulating The research reported in this paper has been supported by
rolls seems to be the only case for which theoretical predicthe Deutsche Forschungsgemeinschatft.
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