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It has recently become apparent that undulating rolls and modulated undulating rolls represent physically
realizable steady solutions of Rayleigh-Be´nard convection in the neighborhood of the critical value of the
Rayleigh number in addition to the solution of two-dimensional rolls. The relative regions of stability of these
three types of convection are studied through analytical as well as through numerical methods. Symmetric
stress-free as well as no-slip boundary conditions are considered; in the former case the analysis is restricted to
moderate and high values of the Prandtl number.@S1063-651X~96!01005-7#

PACS number~s!: 47.20.Bp, 47.20.Ky, 47.20.Lz, 47.54.1r

I. INTRODUCTION

Undulating convection rolls have been seen in fluid layers
heated from below in the presence of a mean flow or of other
effects introducing anisotropies. In experiments by Avsec
and Luntz @1# and by Bénard and Avsec@2# the onset of
convection in an air layer with a mean Poiseuille flow has
been visualized with tobacco smoke and undulating rolls
aligned in the direction of the mean flow have been photo-
graphed. Later undulating rolls as a typical form of convec-
tion have been seen in inclined convection layers@3# and in
electrohydrodynamic convection in liquid crystals@4#. The
wavy instability of longitudinal straight rolls leading to the
establishment of undulating rolls has been studied theoreti-
cally in the case of convection with a plane Couette shear@5#
and in the case of an inclined convection layer@6#. More
recently these studies have been extended to the case of con-
vection in the presence of Poiseuille flow@7#. Investigations
of undulating roll patterns in the case of electrohydrody-
namic convection in liquid crystals have been made by
Bodenschatzet al. @8#. For a recent review of the extensive
research on convection in the presence of a mean shear we
refer to Kelly @9#.

The wavy instability of convection rolls occurs also in the
horizontally isotropic case of a Rayleigh-Be´nard layer where
it is known as the zigzag instability@10,11#. But since the
stability boundary in the plane spanned by the Rayleigh
numberR and the wave numbera never intersects the criti-
cal valueac of a, the transition to undulating rolls is usually
not observed in experiments on convection rolls in the ab-
sence of anisotropic effects. In fact, it was long believed@12#
that the zigzag instability has the sole purpose of facilitating
the transition of rolls with a wavelengthl exceeding the
critical valuelc52p/ac by a certain finite amount to a set
of new rolls oblique to the original ones with the wavelength
lc . The experiments of Busse and Whitehead@13# have sup-
ported this idea in that rolls with fairly large values ofl
which were generated through the use of controlled initial
conditions exhibited this transition. While this interpretation
of the zigzag instability is still roughly applicable, more re-
cent research@14# has indicated intermediate convection

states which can eventually be realized experimentally in a
sufficiently detailed study. In the present paper the surpris-
ingly complex interaction between rolls of different orienta-
tions is revisited and the stability of undulating roll states
and their modulations is analyzed with analytical and nu-
merical methods.

The paper starts in Sec. II with a brief formulation of the
mathematical problem. In Sec. III we follow the bifurcation
scenario within the framework of the Newell-Whitehead-
Segel equation. Instabilities with respect to long-wavelength
pattern modulations are considered in Sec. IV. In Sec. V a
bifurcation analysis of convection patterns in a fixed hori-
zontal periodicity interval is described. In Sec. VI the analy-
sis is extended further with the help of numerical methods. A
general discussion of the results and a comparison with some
older experimental observations is given in the concluding
section.

II. FORMULATION OF THE PROBLEM

We consider convection in a horizontal fluid layer of
heighth heated from below with either no-slip or stress-free
boundaries. The temperaturesT1 andT2 are prescribed at the
lower and upper boundaries, respectively. Usingh as length
scale,h2/k as time scale, wherek is the thermal diffusivity,
andT22T1 as temperature scale, the equations of motion for
the velocity vectorv and the heat equation for the deviation
U of the temperature from its static distribution can be writ-
ten in the form

P21S ]

]t
v1v•“vD52“P1RUk1¹2v,

“•v50, ~2.1!

]

]t
U1v•“U5v•k1¹2U,

where the Rayleigh numberR and the Prandtl numberP are
defined in the usual way,

PHYSICAL REVIEW E MAY 1996VOLUME 53, NUMBER 5

531063-651X/96/53~5!/4807~13!/$10.00 4807 © 1996 The American Physical Society



R5
g~T22T1!gh

3

nk
, P5

n

k
, ~2.2!

with the coefficientg of thermal expansion, the kinematic
viscosityn, and the accelerationg of gravity. It is convenient
to use a Cartesian system of coordinatesx, y, z with z in the
direction of the vertical unit vectork. The boundary condi-
tions are then given either by

U5vz5
]2vz
]z2

50

for stress-free boundaries atz56 1
2 , ~2.3a!

or by

U5vz5
]vz
]z

50

for no-slip boundaries atz56 1
2 . ~2.3b!

Simple solutions of Eq.~2.1! of small amplitude which are
periodic with the horizontal periodicity interval 0<x<2p/a,
0<y<2p/b can be written in the form

vz5 (
j523

3

Aj f ~z,uk j u!exp$ ik j•r%1 (
i , j523

3

AiAjF~z,k i•k j !

3exp$ i ~k i1k j !•r%1~higher-order terms!, ~2.4!

where the horizontal vectorsk i are given by

k15~a,0,0!, k2,35~a,6b,0!

and where the relationshipsk2 i52k i and A2 i5Ai* hold,
with the star denoting the complex conjugate. Solutions de-
scribing convection patterns in the form of rolls, undulating
rolls, rectangles, and oblique rolls can be represented by ex-
pression ~2.4! as long as the control parameter
«[(R2Rc)/Rc is small in comparison with unity and the
wave numberski[uk i u do not differ much from the critical
valueac at which the Rayleigh numberR reaches its mini-
mum valueRc .

According to Ref.@10#, two-dimensional rolls of the form
~2.4! with two of the three amplitudesA1 ,A2 ,A3 vanishing
are the only possibly stable solution among all steady solu-
tions of Eq.~1! in the region

j0
2~k2ac!

2<«F11
P2

4~11P!G ,
with k.ac for stress-free conditions, ~2.5a!

k2ac<2c~P!« for no-slip conditions, ~2.5b!

wherec is a positive constant depending on the Prandtl num-
ber and wherej0

2 is defined by@d2R(k)/dk2#k5ac
/Rc . The

stability boundaries in the«-k plane corresponding to the
equality sign in~2.5! describe the onset of the zigzag insta-
bility. This instability was described in Ref.@10#, but the
stability boundary given in this reference agrees with~2.5a!
only in the limit of infinite P and with ~2.5b! only in the

approximation of a vanishingc(P). A finite value ofc was
advocated in Ref.@15# and numerical determinations of the
zigzag instability boundary have been provided in Refs.@11,
16#. The explicit expression

c~P!5
0.033 6114.6669P2111.2551P22

0.699 2720.004 72P2110.008 32P22 ~2.5c!

has been derived in Ref.@17#. Siggia and Zippelius@18# were
the first to derive the correct stability boundary~2.5a! by
taking into account the large scale mean flow induced in the
presence of stress-free boundaries.

In order to describe the undulating rolls evolving from the
zigzag instability in the regions~2.5! and to consider the
stability properties of the latter type of solutions we shall use
two different approaches. On the one hand it is convenient to
use the formalism of the Newell-Whitehead-Segel equation
since the zigzag instability is a long-wavelength instability of
convection rolls. The other approach relies on amplitude
equations for the amplitudesAi and allows one to express the
stability boundaries in terms of the Prandtl and Rayleigh
numbers. The long-wave disturbance approximation is not
needed in this approach, but the solution of the amplitude
equations usually requires a numerical treatment. To take
into account the peculiarities of the stress-free case, we in-
corporate into our analysis of Sec. V the amplitudeu of the
mean flow.

III. BIFURCATIONS
IN THE NEWELL-WHITEHEAD-SEGEL EQUATION

To provide the general description of the various patterns
and their instabilities, it is convenient to use the formalism of
amplitude equations. As long as the considered patterns re-
main close to straight rolls, one may use the Newell-
Whitehead-Segel~NWS! amplitude equation@19,20# for the
slowly varying complex amplitude of the rolls. After an ap-
propriate rescaling the NWS equation can be written in the
form

]U

]t
5F«2uUu21S ]

]x
2

i

2h

]2

]y2D
2GU, ~3.1!

where« denotes the control parameter and whereh is de-
fined byh5acj0

21. We shall concentrate on spatially peri-
odic solutions with the roll wave numberq ~which in terms
of the convection pattern is the normalized difference from
the critical wave number! and with the wave number
p(p!q) characterizing the modulation of the rolls along
their axis:

U5A~ t !exp$ iqx%1B~ t !exp$ i ~qx2py!%

1C~ t !exp$ i ~qx1py!%1~higher-order terms!.

~3.2!

Given the modulation scalep21, we can rescaleq and «,
q5q̃p2h21 and «5«̃p4h22, such that«̃5«(q̃/q)2. In the
analysis below the stability boundaries will be expressed in
terms of the rescaled variables«̃ and q̃.

By standard projection technique one obtains after dis-
carding the terms of higher order~which means the assump-
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tion of the smallness ofuBu and uCu as compared touAu! the
equations for the time evolution of the complex amplitudes
A,B,C:

dA

dt
5A~ l A2uAu222uBu222uCu2!22A*BC,

dB

dt
5B~ l B22uAu22uBu222uCu2!2A2C* , ~3.3!

dC

dt
5C~ l C22uAu222uBu22uCu2!2A2B* ,

with the linear increments l A5«2q2 and l B5 l C
5«2(q1p2/2h)2, both of which grow with increasing«̃.
The trigonometric representation of the variables
A5uAuexp(ivA), B5uBuexp(ivB), C5uCuexp(ivC) casts
Eq. ~3.3! into the form

duAu
dt

5uAu@ l A2uAu222uBu222uCu2

22uBuuCucos~vB1vC22vA!#,

duBu
dt

5uBu~ l B22uAu22uBu222uCu2!

2uAu2uCucos~vB1vC22vA!,
~3.4!

duCu
dt

5uCu~ l C22uAu222uBu22uCu2!

2uAu2uBucos~vB1vC22vA!,

d

dt
~vB1vC22vA!52sin~vB1vC22vA!

3F uAu2S uBu2

uCu2
1

uCu2

uBu2D12uBuuCuG .

The dependence of the dynamics on the combination
vB1vC22vA[vABC instead of the individual phases is
owed to the symmetry of the problem with respect to trans-
lations in both thex and y directions. It can be easily seen
from the last of Eqs.~3.4! that in the generic case~when the
initial value ofvABC is not an even multiple ofp! this com-
bination monotonically approaches the nearest odd multiple
of p, with cos~vABC!→21, i.e., the complex variables are
getting phase locked. Moreover, insofar as the time deriva-
tive of each individual phase is also proportional to the even-
tually vanishing sinvABC , there can be no ‘‘corotation’’ of
variables~which would correspond to a traveling wave! in-
side this locked state: each of the phases tends to a constant
value. Since we are interested in the properties of the final
states only, we may treat the equations as real ones without
reducing the generality:

dA

dt
5A~ l A2A222B222C212BC!,

dB

dt
5B~ l B22A22B222C2!1A2C, ~3.5!

dC

dt
5C~ l C22A222B22C2!1A2B.

The dynamics of the system~3.5! is bounded, i.e., the
value of

d~A21B21C2!

dt
52~ l AA

21 l BB
21 l CC

2!24A2~B2C!2

22~A21B21C2!24B2C2 ~3.6!

is obviously negative for large values ofuAu, uBu, or uCu. At
the same time this system inherits from the Newell-
Whitehead-Segel equation the variational property

d

dt S 2
1

2
~ l AA

21 l BB
21 l CC

2!1
1

4
~A41B41C4!1A2B21A2C21B2C22A2BCD52S dAdt D

2

2S dBdt D
2

2S dCdt D
2

<0. ~3.7!

The combination of the two latter properties implies that
the only possible global attractors of~3.5! are the stationary
solutions. One should also notice in~3.5! the presence of the
invariant subspacesC5B andC52B.

The basic pattern, the proximity to which is necessary for
the validity of the Newell-Whitehead-Segel approach, is the
pattern of rolls parallel to they axis. The corresponding fixed
points have the coordinates$A,B,C%5$ l A

2,0,0% and will be
referred to as ‘‘A rolls.’’ Other possible pure roll solutions
are those in which only theB or theC mode is excited~B
andC rolls, respectively!. We are interested in the parameter
values for which theA rolls are unstable with respect to
zigzag perturbations; this corresponds to the condition
l B. l A , which defines in theq̃- «̃ plane the half plane

q̃<2 1
4 ~3.8!

whose vertical right boundary separates the domain of
zigzag-stable rolls from that of the long-wave zigzag-
unstable ones. In the following we shall restrict ourselves to
the domain~3.8!. As a consequence theA rolls always have
at least one growing perturbation mode. Aiming at the com-
plete description of the bifurcations of the steady solutions of
Eq. ~3.5! the condition of smallness ofuBu and uCu as com-
pared touAu will be waived.

When bothl A andl B are negative, the only attracting state
is the trivial zero equilibrium. With increasing«̃, l B becomes
positive for «̃ >«̃B5(q̃1 1

2 )
2 and two symmetric couples of

stableB rolls (B25 l B) andC rolls (C25 l B) bifurcate from
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zero. Their basins of attraction in the phase space are sepa-
rated by the stable manifolds of the simultaneously born un-
stable fixed points, given by the expressionA50,
B25C25 l B/3, and corresponding to the rectangle patterns.
At l A50 («̃5 «̃A5q̃2) the couple of unstableA rolls bifur-
cates from zero; these fixed points have two positive eigen-
values. The two corresponding eigenmodes describe modu-
lations of the roll boundaries with the excursions of the
opposite boundaries being either in counterphase~the
‘‘knuckle’’ instability ! or in phase~the ‘‘zigzag’’ instability!
as shown in Fig. 1. The knuckle instability is removed
through the subcritical pitchfork bifurcation occurring at the
line l B53l A , which in terms of the coefficients of the initial
problem is given by

«̃5 «̃K5q̃22
q̃

2
2
1

8
. ~3.9!

The mixed-mode solutions with A25(2l B2 l A)/5,
B25(3l A2 l B)/15, C52B, which are born at this bifurca-
tion and exist for«̃ . «̃K , are always unstable due to the
presence of two positive eigenvaluesl corresponding to
growth rates of disturbances: one of them equals 2l B/3 and is
responsible for the breaking of the symmetryC52B; the
other one is the positive root of the characteristic equation
5l212(2l A1 l B)l220A2B250 which describes the pertur-
bations within the subspaceC52B.

The zigzag instability in the case ofA rolls is stabilized
only at the right boundaryl A5 l B of the domain~3.8!. As a
result of this supercritical pitchfork bifurcation the steady
solutions with

A253l A22l B , B25 l B2 l A , C5B ~3.10!

are born which correspond to the undulating roll pattern.
Thus the right boundary of the domain in which the pattern
~3.10! exists is given byl A5 l B ; the left one is the line
3l A52l B , i.e.,

«̃5 «̃U5q̃ 222q̃2 1
2 . ~3.11!

The condition «̃5 «̃U corresponds to the supercritical
pitchfork bifurcation, at which the solutions~3.10! branch
from the unstable rectangular pattern. Along with two obvi-
ously negative eigenvalues corresponding to the invariant
subspace B5C ~the characteristic equation being
l212l Bl14A2B250!, the solutions~3.10! possess the ei-
genvalue 6l B28l A which is responsible for the eigenmode
with BÞC and is positive close to«̃U , but becomes negative
for

«̃>«̃S5q̃ 223q̃2 3
4 , ~3.12!

which condition defines the domain of stability of the undu-
lating rolls. The line«̃5 «̃S denotes the subcritical pitchfork
bifurcation, at which the unstable steady mixed-mode solu-
tions

B25
l B

~11r!2
, A25rB2, C5rB,

where r21r
2l A1 l B
l A22l B

1150 ~3.13!

are born which exist for«̃>«̃S . The bifurcation at~3.12! is a
symmetry-breaking bifurcation: unlike the undulating rolls
~3.10!, the unstable solutions~3.13! do not possess reflec-
tional symmetry in the longitudinal direction.

For fixed q̃ the bifurcation values of«̃ are ordered in the
following way: 0, «̃B, «̃A, «̃T, «̃U, «̃S . To summarize,
let us consider the route across the domain~3.8! which cor-
responds to an increase of bothq̃ and «̃. After the destabili-
zation of the zero equilibrium one observes the birth of
stableB andC rolls as well as of unstable rectangles. Later
the unstableA rolls are born; their instability is partially
remedied at the line«̃5 «̃T . Further on, the unstable undu-
lating rolls are born from the rectangles at the line«̃5 «̃U .
They get stabilized at the line«̃5 «̃S , emitting the unstable
solutions ~3.13!. Finally, at the right boundaryq̃521

4 the
stable undulating rolls merge into theA rolls, thus stabilizing
them. For the case of fixed negativeq̃ and varying«̃ the
interchange of stability between the steady states is sketched
in Fig. 2, where the solid lines denote the stable states,
whereas the dashed and dotted curves correspond to the un-
stable solutions with one and two positive eigenvalues, re-
spectively.

IV. LONG-WAVE MODULATIONAL INSTABILITIES
OF THE UNDULATING ROLLS

The conclusion about the stability of the undulating rolls
~3.10! for «̃ . «̃S is valid only within the class of the patterns
given by Eq.~3.2!. To allow for perturbations modulating the
wavelength of the pattern, let us impose onto~3.10! infini-
tesimal disturbances of the form

(
6

exp$6 id~x cosf1y sin f!%@j1
6exp$ iqx%

1j2
6exp$ i ~qx2py!%1j3

6exp$ i ~qx1py!%]1c.c.,
~4.1!

FIG. 1. Patterns of solutions bifurcating from straight rolls:
knuckle pattern~left! and undulating rolls~right!. The patterns have
been obtained through a superposition of disturbances with a finite
amplitude onto the pattern of straight rolls.
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where the anglef~0,f,p/2! characterizes the direction of
the modulation. The value ofd is assumed to be small as
compared toq. After substituting this ansatz into the NWS
equation one obtains the linearized equations for the dynam-
ics of the amplitudesj j (t):

j̇1
65j1

6~ l 1
624B222A2!1j1

7* ~2B22A2!22j2
7*AB

12j3
7*AB,

j̇2
65j2

6~ l 2
624B222A2!12j3

6B222j1
7*AB2j2

7*B2

1j3
7* ~2B22A2!,

~4.2!

j̇3
652j2

6B21j3
6~ l 3

624B222A2!12j1
7*AB

1j2
7* ~2B22A2!2j3

7*B2,

where the values ofA andB are taken from~3.10!, and the
coefficientsl j

6 ~j51,2,3! represent the contributions of the
linear term of the NWS equation to the dynamics of the
modesj j

1 andj j
2 given by the formulas

l 1
65«2S 6d cosf1q1

d2sin2f

2h D 2,
l 2

65«2S 6d cosf1q1
~6d sinf2p!2

2h D 2, ~4.3!

l 3
65«2S 6d cosf1q1

~6d sinf1p!2

2h D 2.

The growth rateslj of the eigenmodesj
6(t)}exp(lt) of Eq.

~4.2! can be found as the eigenvalues of the corresponding
complex matrix of sixth order. Owing to the fact that the
coefficients of~4.2! are real, the latter matrix is decomposed
into two identical real matrices, which are associated with
the real and imaginary components of the amplitudesj j

6,
respectively. In fact, this separation means that all the eigen-
values of the complex matrix~which are real due to the
variational property of the NWS equation! must be of mul-
tiplicity not less than 2. This additional symmetry arises
from the freedom of choice of the phase of the complex
perturbation. Due to this degeneracy the pitchfork bifurca-
tion should produce not a couple of new steady solutions but
a continuous family of them~parametrized by the phase!. If
the corresponding symmetry is disturbed, the family disap-
pears, leaving isolated fixed points since oscillatory states
like standing or traveling waves are forbidden by the varia-
tional character of dynamics. Keeping this in mind, we will
simply consider below the real matrix of sixth order which
can be, for example, the one acting in the subspace of the
real parts ofj j

1 andj j
2.

Further reductions are possible when the problem has ad-
ditional symmetries. These are encountered when the modu-
lation is directed either along thex axis ~f50! or along the
y axis ~f5p/2!, respectively. Let us consider the first of
these two possibilities. In this casel 2

15 l 3
1 and l 2

25 l 3
2

holds, and the matrix of the sixth order can be further de-
composed into two submatrices. The first of them is respon-
sible for the four-dimensional invariant subspace defined by
the conditionsj2

652j3
6 , and the second one corresponds to

the two-dimensional invariant planej2
62j3

65j1
650. The de-

terminant of the related matrix for the perturbations of the
former kind@the ‘‘domain’’ perturbations, see Fig. 3~a!# can
be presented as

8d2A2B2
p4

h2 ~ «̃23q̃221!1d4K4~ «̃,q̃!

1d6K6~ «̃,q̃!1d8. ~4.4!

The stability of the undulated rolls with respect to the do-
main perturbations with vanishingd requires the positiveness
of the factor ofd2 in ~4.4!:

«̃ . «̃d53q̃ 211. ~4.5!

By inspection both factorsK4 andK6 in ~4.4! are positive
for «̃<«̃d andq̃,21

4. Consequently, the instability for finite
d arises for higher values of«̃ than in the case of infinitesi-
mal d.

Two growth ratesl for the perturbations belonging to the
second kind of symmetry@the corresponding flow pattern is
shown in Fig. 3~b!# are determined from the characteristic
equation

l222l~B22A22d2!

12d2FB22A222S q1
p2

2h D 21d2G50. ~4.6!

Hence the stability condition

FIG. 2. Exchange of stability between bifurcating steady solu-
tions for q̃521.0. Stable solutions are indicated by a solid line,
unstable solutions with one~two! positive growth rates are indi-
cated by dashed~dotted! lines. Circles mark pitchfork bifurcations.
The circles denoted byK,U,S correspond to the disappearance of
the knuckle instability, the birth of undulating rolls from rectangles,
and stabilization of undulating rolls through the emission of asym-
metric mixed solutions, respectively.
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«̃. «̃n[3q̃ 22q̃2
1

4
2d2

h2

p4
~4.7!

follows, which shows again that among all disturbances
those with infinitesimald are the most dangerous.

Owing to the fact that both«̃d and«̃n are obviously larger
than «̃S , these two instabilities reduce the domain of exist-
ence of stable undulating rolls. In the case of very smalld
the value of«̃n is smaller than that of«̃d for q̃.25

4. On the
other hand, the patterns withq̃,25

4 are more sensitive to the
perturbations of the second kind.

Now let us consider the second special case: the modula-
tions of the pattern~3.10! in they direction. In this situation
l 1

15 l 1
2, l 2

15 l 3
2, andl 2

25 l 3
1. The Jacobian matrix of~4.2!

is decomposed into two matrices of third order. The respec-
tive perturbations have basically the similar ribbonlike shape
but differ by the phase, which is shifted along the undulated
pattern by half of its transversal period. The first of the
submatrices corresponds to the variablesj1

11j1
2* , j2

1

2j3
2* , and j3

12j2
2* . For d50 ~when l 2

65 l 3
65 l B and

l 1
65 l A! it has two obviously negative eigenvalues equal to

2(3B21A2)6A(3B21A2)224A2B2 and the third eigen-
value equals zero. To evaluate the effect of a small, but finite
d on this last eigenvalue, the determinant of the matrix must
be calculated with the result

A2p6

2h4 ~24q̃2130q̃17!d21o~d4!. ~4.8!

The stability of the solutions~3.10! with respect to the per-

turbations with vanishingd requires that the bracketed ex-
pression in the last expression should be negative, that is,

2152A57
24

,q̃,
2151A57

24
. ~4.9!

It is noteworthy that this condition does not depend on«̃ and
imposes restrictions only on the wave number. The eigenval-
ues of the other third order matrix which describes the vari-
ables j1

12j1
2* , j2

11j3
2* , and j3

11j2
2* at d50 are 0,

22(2B21A2), 2(B22A2). For «̃. «̃S the last one is nega-
tive, and the possible instability for small but finite values of
d can be associated only with the first eigenvalue. The de-
terminant of the matrix equals

p10

h6 S 24q̃ «̃ 21 «̃~8q̃3212q̃219q̃13!1
5

4
110q̃

113q̃2225q̃ 3112q̃424q̃5Dd21o~d4!. ~4.10!

The domain of stability of the solutions~3.10! with respect to
the long-wave disturbances of the considered symmetry type
is bounded by the curve at which the bracketed expression
in ~4.10! vanishes. This condition yields a quadratic equa-
tion for «̃. In the region of existence of the undulating rolls
~«̃,21

4! this equation has real roots only in the interval
20.687 15,q̃,20.294 43. Therefore the domain of stabil-
ity is encircled by a closed curve«̃5 «̃ l stretched between
these two values ofq̃ ~the upper and lower branches of the
curve correspond to the two roots of the quadratic equation!.

The bifurcation diagram in theq̃- «̃ plane is presented in
Fig. 4~a!, where all described bifurcation lines are plotted.
As a curious detail one may notice the tangency of three
curves: «̃S(q̃), «̃n(q̃), and the lower branch of the
curve «̃ l(q̃) at the point~q̃521

2, «̃51!. However, the insta-
bilities whose onset is marked by these curves, as well as
those occurring outside the vertical stripe bounded by the
lines ~4.9!, seem to be of purely academic significance. One
sees that the undulating rolls given by the expression~3.10!
are unstable with respect to long-wave disturbances almost
everywhere in the region of their existence. The only excep-
tion is the narrow wedge between the two intersections of the
curve «̃d with the upper branch of the curve«̃ l which occur
at the points~q̃521

2, «̃57
4! and~q̃520.595 03,«̃52.0633!.

In the application to the physical problem, of course, the
rescaling«5«̃(q/q̃)2, q5q̃p2h21 has to be kept in mind.

The nonlinear development of the long-wave modulations
may be estimated through the computation of the cubic terms
in the corresponding amplitude expansions. Our calculations
show that both of two relevant instabilities, encircling the
mentioned island of stability of the undulated rolls, are su-
percritical: this means that the corresponding patterns should
be stable at least locally near the respective bifurcation
boundaries. Thus one may expect to observe the stable do-
mainlike patterns immediately below the curve«̃d and rib-
bonlike longitudinally modulated undulating rolls for«̃>«̃ l .
Among the latter patterns those are of special interest whose

FIG. 3. Patterns of transversal long-wave instabilities of undu-
lating rolls. The long-wave instability manifests itself either in
modulation of the amplitude of undulations@~a!, see also Ref.@14##
or in a modulation of the phase of undulations@~b!#.
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modulation length is in resonance with the wave numberp of
the undulating rolls themselves. Two examples are shown in
Fig. 5.

V. BIFURCATIONS IN THE AMPLITUDE EXPANSION
OF THE BOUSSINESQ EQUATIONS

The predictions obtained above with the help of the NWS
equation can readily be applied for all Prandtl numbers to the
case of convection in a fluid layer with rigid boundaries. The
dynamical properties of a fluid layer with stress-free bound-
aries are still described by the NWS equation as long as the
Prandtl numberP is infinite. WhenP is finite, the effects due
to the possible presence of a mean flow must be taken into
account. In order to include the mean flow we perform the
analysis for the stress-free case with the help of coupled
amplitude equations describing the temporal evolution of the
velocity field. This dynamical model captures reasonably
well the basic phenomena close to the onset of convection.
When the velocity field is decomposed into a poloidal and
a toroidal component,v5“3~“3kF!1“3kc ~where k
is the vertical unit vector!, then three complex variables,
aj (t) ~j51,2,3!, correspond to the time-dependent ampli-
tudes of the basic components ofF whose wave vectors may
be written in the formkj5„a,( j22)p,0…. Both the values of
p and ofac2a are assumed to be positive and small where
ac5p/& is the critical wave number. The fourth variable
u(t) is responsible for the mean flow and corresponds to the
component of the toroidal field with the weakest linear
damping~it can be represented as a sum of two terms gen-
erated by the interaction of the first mode with the second
one and the second mode with the third mode, respectively!.

FIG. 4. Bifurcation diagram based on the Newell-Whitehead-
Segel equation. «̃B , birth of stableB and C rolls and unstable
rectangles;«̃A , birth of unstableA rolls; «̃K , removal of the
knuckle instability ofA rolls; «̃U , birth of unstable undulating rolls
from rectangles;«̃S , stabilization of undulating rolls through sym-
metry breaking;«̃d , boundary of domain instability for undulating
rolls; «̃n , stability boundary provided by Eq.~4.7!; «̃v , stability
lines given by Eq.~4.9!; «̃ l , boundary of the longitudinal modula-
tion instability ~4.10! for undulating rolls.

FIG. 5. Patterns of longitudinal modulations
of the undulating rolls. The modulation wave
numberd is a fraction of one-half~left pattern! or
one-third ~right pattern! of the wave number of
the undulations.
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The equations governing the time evolution of the ampli-
tudesaj ,u are

ȧ15g1~R2R1!a12a1S (
i51

3

s1i uai u2D 2s14a2
2a3*1s1a2u* ,

ȧ25g2~R2R2!a22a2S (
i51

3

s2i uai u2D 2s24a1a2* a3

1s2~a3u*2a1u!,
~5.1!

ȧ35g3~R2R3!a32a3S (
i51

3

s3i uai u2D 2s34a2
2a1*2s1a2u,

u̇52d2u1Q~a3a2*2a2a1* !,

whereRj5(p21ukj u
2)3ukj u

22 are the threshold values ofR
corresponding to the excitation of thej th mode,Q5app2/2,
and the factors gj are given by g j
5ukj u

2(p21ukj u
2)22(11P)21. The derivation of Eq.~5.1!

as well as the complicated expressions relating the factorssi j
andsi of the nonlinear terms to the parametersR, P, a, and
p can be found in Ref.@21# wherea,p are denoted byb,d.
The symmetries displayed by the quadratic terms depend on
the symmetry betweenk1 andk3. Besides the obvious con-
sequenceR15R3 , the latter symmetry also simplifies the
matrix of the coefficients of the cubic terms:s115s33,
s125s32, s135s31, s145s34, ands215s23.

The basic difference between Eqs.~3.3! and ~5.1! is the
presence of the fourth component representing the mean
flow. This term not only increases the order of the system but
also destroys the variational character of the dynamics. In the
general case it is impossible to prove that the only attractors
are the steady solutions. On the contrary, it can be shown
that at very low values ofP Hopf bifurcations will be en-
countered, giving rise to time dependency. However, at the
high and moderate values ofP the influence of the mean
flow is more quantitative than qualitative, and the assump-
tion that, similarly to the case of the NWS equation, the
whole phase space can be decomposed into the domains of
attraction of the few fixed points~for which only thelocal
stability can be proven! seems quite plausible.

Once again, the presentation in the trigonometric form
aj5uaj uexp(iv j ) ~j51,2,3!, u5uuuexp~iv4! permits us to
reduce the actual dimension of the problem. Due to the two
translational symmetries in the plane of the layer the dynam-
ics does not depend on the individual values ofvj , but only
on the combinationsv122v21v3 and v22v12v4. Al-
though we are unable to prove that the union of invariant
subspaces in which both of these combinations are even mul-
tiples ofp is globally attracting, our numerical experiments
with different initial conditions strongly support this assump-
tion. The time derivatives of individual phasesvj are pro-
portional to sines of the collective phases and thus vanish on
these subspaces. The solutions with time-independent ampli-
tudes for which the mentioned combinations are different
from multiples ofp would describe traveling waves. These
can be encountered only for rather low values ofP and are

unstable for the considered wave vectors. The problem is
thus reduced to the set of real ordinary differential equations:

ȧ15g1~R2R1!a12a1~s11a1
21s12a2

21s13a3
2!2s14a2

2a3

1s1a2u,

ȧ25g2~R2R2!a22a2~s21a1
21s22a2

21s21a3
21s24a1a3!

1s2u~a32a1!,
~5.2!

ȧ35g1~R2R1!a32a3~s13a1
21s12a2

21s11a3
2!2s14a2

2a1

2s1a2u,

u̇52d2u1Qa2~a32a1!.

We consider the bifurcations of steady states in Eqs.~5.2!
under the provisionR1,R2 , which is equivalent to

p,(p21a2)(114A114p2a2223)/2. Having fixed the
values ofP, a, andp we increase the Rayleigh number be-
yond the threshold valueR1 which marks the onset of con-
vection in the form of the roll pattern with the wave vector
$a,p%. In the general case the explicit expressions for the
coefficients of~5.2! corresponding to each of the occurring
bifurcations do not shed direct light on the respective inter-
relations between the bifurcational values of the physical pa-
rametersR, P, a, andp, owing to the complicated way in
which the former depend on the latter. A simplification is
possible in the case of smallp for which the truncation em-
ployed for the velocity field provides the asymptotically cor-
rect description of the situation. The leading terms in the
expansions for the coefficients are given in this case by the
R-independent expressions:

s125s135s215s2452s1152s1452s225
a4P2

11P
1o~p2!,

s15s25p@a1o~p2!#, g15g21o~p2!. ~5.3!

It turns out that in the range of high and moderate values of
P the increase ofR leads to the same sequence of bifurca-
tions as the increase of«̃ in the NWS equation forq̃,21

4. At
R5R1 the mechanical equilibrium loses stability, and the
stable rolls with (a 1

2 ,a 2
2 ,a 3

2 ,u)5„g1(R2R1)s11
21,0,0,0… and

(a 1
2 ,a 2

2 ,a 3
2 ,u)5„0,0,g1(R2R1)s11

21,0… ~the analogs ofB
andC rolls from the preceding section! are born. Their do-
mains of attraction in the phase space are separated by the
stable manifolds of the nonstable steady solutions with
a 1
25a 3

25g1(R2R1)(s111s13)
21, a25u50, which corre-

spond to the unstable rectangular planforms. At
R5R2'R11p2~p623a4p222a6!/a4 the rolls with wave
vector$a,0% bifurcate from the equilibrium. The correspond-
ing fixed point

a15a35u50, a2
25g2~R2R2!s22

21 ~5.4!

in the phase space has a two-dimensional unstable manifold.
Just as in the case of the NWS equation, the respective in-
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stabilities correspond either to deformations of the roll
boundaries~zigzags! or to amplitude modulations~knuckles!.
When the valueRK of R satisfying the condition

g1~R2R1!s22[g2~R2R2!~s121s14!, ~5.5!

which for smallp is

R5RK5R11
3
2 ~R22R1!1o~p3!, ~5.6!

is reached, the knuckle instability is removed via the sub-
critical bifurcation: The resulting steady solutions withu50,
a15a3 are unstable everywhere in the domain of their exist-
ence,R.RK . The further increase ofR leads to the next
bifurcation atR5RU which corresponds to

g2~R2R2!~s111s13!5g1~R2R1!~2s212s2424p2Qs2!,
~5.7a!

i.e.,

R5RU5R11~R22R1!
3P2a2

3P2a214p2~11P!
1o~p3!.

~5.7b!

At this point the undulating roll solutions with

a1
25@g1~R2R1!s222g2~R2R2!~s122s14

12p22s1Q!#D21,

a2
25@g2~R2R2!~s111s13!2g1~R2R1!~2s212s24

24p22s2Q!#D21,
~5.8!

a352a1 ,

u522p2Qa1a2 ,

where

D5~s111s13!s222~s122s1412p22s1Q!

3~2s212s2424p22s2Q!

branch from the unstable rectangles. The solutions~5.8! in-
herit from the rectangular pattern the instability with respect
to perturbations which violate the symmetrya352a1 . This
instability is removed by the subcritical pitchfork bifurcation
which occurs atR5RS when the coefficients of~5.2! satisfy

g1~R2R1!5a1
2~3s112s13!1a2

2~s121s14!, ~5.9!

where the values ofa1 anda2 are taken from~5.8!. For small
p this expression yields

RS'R21~R22R1!

3
3P4a426P2a2p2~11P!14p4~11P!2

P4a415P2a2p2~11P!24p4~11P!2
.

~5.10!

This symmetry-breaking bifurcation produces unstable
steady solutions witha3Þ2a1 which exist in the parameter
domainR.RS . Finally the value of the Rayleigh number

FIG. 6. Exchange of stability between steady convection solu-
tions for P55, a52.1, p5Aac

22a250.724. Stable solutions are
indicated by solid lines, unstable solutions with one~two! positive
growth rates are indicated by dashed~dotted! lines. The circles
mark the same pitchfork bifurcation as in Fig. 2. In addition, the
bifurcationZ which marks the transition from undulating to straight
rolls with increasingR is shown.

FIG. 7. Bifurcation lines and stability regions in the caseP550,
p50.5. The meaning of the symbols is as follows:R2, birth of
rolls ~unstable forq,20.027 99!; RU , birth of unstable zigzags
from unstable rectangles;RK , removal of the knuckle instability for
the rolls; RS , stabilization of undulating rolls through symmetry
breaking;RZ , removal of zigzag instability for rolls.
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reaches the boundary of the zigzag instabilityR5RZ which
is determined by the condition

g1~R2R1!s225g2~R2R2!~s122s1412p22Qs1!. ~5.11!

For smallp the latter becomes
RZ5R21~R22R1!

a2P2

2p2~11P!
1o~p3!. ~5.12!

Here the stable undulating rolls~5.8! merge with the unstable
straight rolls~5.4!, transferring to the latter their stability: for
R.RZ the pattern~5.4! is stable. It is straightforward to see
that for a→p/& the last expression provides the boundary
~2.5a! @18,22#. The stability exchange between the steady

FIG. 8. Dependence of stability boundaries on the Prandtl num-
ber for the horizontal periodicity interval given bya52.1,
p50.724.

FIG. 9. Stability exchange for the low values ofP,P52.4. The
same wave vectors as in Figs. 6 and 7 have been chosen. Stable
solutions are indicated by solid lines, unstable solutions with one
~two! positive growth rates are indicated by dashed~dotted! lines.
The circles mark the same bifurcations as Figs. 2 and 6, but the
symmetry-breaking bifurcationS occurs for the knuckle solution
instead of the modulating rolls.

FIG. 10. The stability of flows forp50.5 andP5100 as a
function of the scaled supercritical Rayleigh number« and the wave
numberq. Primary rolls, which exist above the neutral curve~long-
dash short-dashed line!, are stable above the zigzag line~——! or
the Eckhaus line~---! depending on which one is higher. Undulating
rolls are stable in the hatched region and undergo instability with
respect to domain modes~-•-•! or with respect to undulation modu-
lations ~••••••!.

FIG. 11. Same as Fig. 10, but forp50.7 andP5100.
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solutions of Eq.~5.2! caused by the increase ofR under the
fixed values ofa52.1,p50.7,P55.5 is presented in Fig. 6.
The relatively low value ofP has been chosen in order to
enhance the resolution of the plotted curves which can oth-
erwise hardly be distinguished. The phase diagram in the
plane of the parametersq5a2ac andR for the fixed values
P550 andp50.5 is shown in Fig. 7.

As in the case of the NWS equation, the stability domain
of the undulating rolls in the«-q plane lies between two
curves, marking the onset of the symmetry-breaking instabil-
ity and of the zigzag instability, respectively. The only dif-
ference is the location of the latter curve. In the NWS type
analysis this boundary on theq-« plane is parallel toq50
@up to the effects associated with a nonvanishingc(P), see
~2.5b! and~2.5c! above#; hence the increase of« alone leaves
the roll pattern unstable with respect to zigzag perturbations.
In the presence of the mean flow, however, the increase ofR
leads to the disappearance of the zigzag mode, and the re-
sulting boundary in Fig. 7 is inclined.

As the value of the Prandtl number is decreased, the
whole sequence of events is altered. The boundary of the
knuckle instability is almost insensitive to variations ofP.
The latter mainly affects the intensity of the mean flow. But
as can be seen from the shape of the knuckle pattern~Fig. 1!,
the curvatures of the opposite sides of the roll exactly bal-
ance each other. Hence the bifurcating unstable steady solu-
tion does not include a mean flow component. On the other
hand, bifurcations associated with the undulating roll pattern
are strongly affected by changes ofP: the graphs ofRU(P),
RS(P), andRZ(P) on the parameter plane follow the de-
crease ofP ~see Fig. 8 fora52.1 andp50.724!.

The bifurcation curvesRZ(P) andRK(P) intersect in the
point, the coordinatesP

*
and R

*
of which ensure

s145p22s1Q. For smallp this equality can be transformed
with the help of~5.3! into

P
*
2

P*11
5

p2

a2 . ~5.13!

For P,P
*
the order of bifurcations following the increase

of R from R2 is different~Fig. 9!: now the first instability of
the pattern~5.4! to be removed is the zigzag instability. The
undulating rolls~5.8! are unstable towards the symmetry-
breaking perturbations everywhere in the domain of their
existence, RU(P),R,RZ(P). Immediately beyond the
boundary of the zigzag instability the straight rolls~5.4! are
still unstable with respect to the knuckle mode. Their stabil-
ity is completely restored on reaching the lineR5RK(P).
The knucklelike steady solutions produced by this bifurca-
tion are always unstable. The further growth ofR increases
the number of their instabilities, when the two steady solu-
tions with a1Þa3 branch from the knuckle mode as a con-
sequence of the symmetry-breaking bifurcation as shown, for
instance, at the pointS in Fig. 9. This instability is analogous
to the corresponding instability of the undulating rolls and is
also described by expression~5.9!. The branch of the
traveling-wave solutions which results from the interaction
of the zigzag and the knuckle instabilities bifurcates into the
directionP,P

*
and is unstable. Thus stable undulating rolls

can be met only forP.P
*
. The value ofP

*
depends ona

and p. Keeping in mind thata2<a c
25p2/2, we see from

~5.13! that the valueP511)52.732 . . . represents the
lowest possible boundary ofP

*
(a,p).

VI. LONG-WAVE INSTABILITIES
AND THEIR NONLINEAR EVOLUTION

In order to investigate the stability of undulating rolls
with respect to wavelength changing instabilities at finite
Prandtl numbers we have extended the system of Eq.~5.1! to
one with at least nine wave vectors included. The coeffi-
cients have been calculated numerically from the underlying
basic equations~2.1! by assuming that all rolls have approxi-
mately the same critical Rayleigh number, i.e., we have a
multiple bifurcation point. The computations confirmed that
in the parameter space the region of stability for the undu-
lating rolls lies between the boundary of the ‘‘domain’’ in-
stability and the border of the longitudinal modulation insta-
bility.

The results of the analysis can be seen in Figs. 10 and 11
for P5100 andp50.5 or 0.7, respectively. In comparison
with the case of infiniteP ~see Fig. 4!, the region of stable
undulations is much bigger for this intermediate value ofP.
The region of stable undulations also grows with increasing
p. The deformation of the stability boundary in the case of
P5100,p50.7 seems to be due to a Prandtl number effect.
When the Prandtl number is decreased further, the region of
stability shrinks again, as can be seen in Fig. 12 for which
the parametersP525 andp50.7 were chosen. This effect is
due to the decreasing regime of stable zigzags with respect to
the symmetry-breaking instability for decreasingP analyzed
in Sec. V and shown in Fig. 8.

Although the domain instability may be viewed as a wave
number adjustment process@14#, it conserves the number of
the roll pairs in contrast to the classical Eckhaus instability.
The computations confirm the supercritical character of the
respective bifurcation. The stability of the domain states was
checked by the time integration of the corresponding equa-
tions with the use of the explicit Adams-Bashforth method.
The initial conditions for most of the runs were chosen near

FIG. 12. Same as Fig. 10, but forp50.7 andP525.
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the slightly distorted roll pattern~under the parameter values
where this pattern is unstable with respect to the zigzag per-
turbations!. Usually the system heads for the undulating pat-
tern. If the latter is also unstable, further instabilities evolve.
For higher orders of truncation we also used the vicinity of
the steady undulating roll solution as a starting point.

It can be seen that the domain pattern is stable for trun-
cations including nine and more wave vectors, although the
increase of the number of modes leads to some decrease of
the stability region. It turns out that adding the modes whose
wave numbers are multiples of the undulation wavelength
does not influence the stability. Much more dangerous for
the domain pattern with the transversal modulation wave
numberd are the subharmonic disturbances corresponding to
the modes with (2n21)d/2, n51,2, . . . .When initial con-
ditions near the primary roll are chosen, the domain mode
with the smallest possible wave vector is usually reached as
a stable fixed point. But a detailed study of the preferred
wavelength of the domain pattern as a function of the param-
eters of the problem has not yet been made.

VII. DISCUSSION

The theoretical predictions made in this paper and the
preceding Letter@14# could eventually be tested in a labora-

tory experiment. The method of controlled initial conditions
introduced by Chen and Whitehead@23# and applied success-
fully in the experimental study@13# of the stability of roll
pattern in dependence on their wavelength could be used to
explore stable patterns of undulating rolls and of domain
structures together with their instabilities. At the time of the
earlier study@13# there were no theoretical reasons to attempt
a more detailed exploration of the parameter space. Never-
theless, the observations did indicate a tendency towards do-
main formation. In Fig. 13 a previously unpublished set of
the photographs is shown, obtained in the same fashion as
those given in Ref.@13#. Through controlled initial condi-
tions rolls with a wavelength in the zigzag-unstable regime
were generated. As the zigzag instability evolves, it spreads
primarily along the axis of the rolls and tends to compress
rolls between regions of strong undulations such that an in-
termediate region of only weakly undulating rolls is ob-
tained. In the case of Fig. 13, the parameters were obviously
chosen in such a way that the strongly undulating rolls
evolved into oblique rolls. But the tendency towards a do-
main structure is noticeable in that the weakly undulating
rolls return to almost straight rolls.

The main difference between the laboratory apparatus and
the assumptions of the theory is the finitely conducting

FIG. 13. Shadowgraph visual-
ization of the evolution of the zig-
zag instability in a layer of sili-
cone oil heated from below.
Intervals between the photographs
are about 10 min except for the
last interval, which is about 30
min. The same parameter values
~R'3600,P'100! as in the case
of Fig. 11 of Ref.@13# were used.
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boundaries of the experimental configuration. Because of the
use of the shadowgraph method for the visualization, this
condition will probably be retained in future experiments.
But all indications suggest that only qualitative aspects of the
experiment such as a shift in the critical value of the wave
number will be affected by a finite ratio between the conduc-
tivities of fluid and boundary. Since the case of undulating
rolls seems to be the only case for which theoretical predic-

tions on pattern domains are available, future experiments
are highly desirable.
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